ASQ CERTIFIED QUALITY ENGINEER

SCOTT A. LAMAN, Editor

THE ASQ CERTIFIED QUALITY ENGINEER HANDBOOK

THE ASQ CERTIFIED QUALITY ENGINEER HANDBOOK

Fifth Edition

Scott A. Laman, Editor

Published by ASQExcellence, Milwaukee, WI

Produced and distributed by Quality Press, ASQ, Milwaukee, WI

© 2022 by ASQExcellence

No part of this book may be reproduced in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Publisher's Cataloging-in-Publication Data

Names: Laman, Scott A., editor.

Title: The ASQ certified quality engineer handbook , fifth edition / Scott A. Laman, Editor. Description: Includes bibliographical references and index. | Milwaukee, WI: ASQExcellence, 2022

Identifiers: LCCN: 2022947805 | ISBN: 978-1-63694-026-7 (hardcover) | 978-1-63694-028-1 (epub) | 978-1-63694-027-4 (pdf)

Subjects: LCSH Production management--Quality control--Handbooks, manuals, etc. | Reliability (Engineering)--Handbooks, manuals, etc. | BISAC BUSINESS & ECONOMICS / Quality Control | STUDY AIDS / Professional

Classification: LCC TS156 .A87 2022 | DDC 658.4/013--dc23

ASQ advances individual, organizational, and community excellence worldwide through learning, quality improvement, and knowledge exchange.

Bookstores, wholesalers, schools, libraries, businesses, and organizations: Quality Press books are available at quantity discounts for bulk purchases for business, trade, or educational uses. For more information, please contact Quality Press at 800-248-1946 or books@asq.org.

To place orders or browse the selection of all Quality Press titles, visit our website at: http://www.asq.org/quality-press.

Printed in the United States of America 26 25 24 23 22 LP 6 5 4 3 2 1

Quality Press
600 N. Plankinton Ave.
Milwaukee, WI 53203-2914
Email: books@asq.org
Excellence Through Quality™

Table of Contents

List of Figures	xi
List of Tables	xvii
Preface	xxi
Acknowledgments	xxv
List of Acronyms	xxviii
Certified Quality Engineer (CQE) Body of Knowledge	xxxii
Chapter 1 Management and Leadership	1
Quality Philosophies and Foundations	2
What Is Quality?	2
History of Quality	4
Continuous Improvement Tools.	11
The Quality Management System (QMS)	12
Strategic Planning	12
Deployment Techniques	16
Quality Information System (QIS)	34
ASQ Code of Ethics for Professional Conduct	41
Code of Ethics	41
Ethical Dilemmas	43
Leadership Principles and Techniques	44
Developing, Building, and Organizing Teams	46
Leading Quality Initiatives	50
Facilitation Principles and Techniques	51
Facilitator Roles and Responsibilities	52
Facilitation Tools	54
Communication Skills	58
Customer Relations	60
Customer Needs and Wants	61
Customer Value Analysis	61
Customer-driven Quality	62
Supplier Management	64
Techniques	64
Improvement	70
Risk	71
Barriers to Quality Improvement	71

Chapter 2 The Quality System	
Elements of the Quality System	. 75
Basic Elements	
Design	. 79
Documentation of the Quality System	. 80
Document Components	. 80
Document Control	
Quality Standards and Other Guidelines	
The ISO 9000 Family	
Other Quality Standards	
Malcolm Baldrige National Quality Award	
Quality Audits	
Types of Audits	
Roles and Responsibilities in Audits	
Audit Planning and Implementation	
Audit Reporting and Follow-up.	
Cost of Quality (COQ)	
The Economics of Quality	
Goal of a Quality Cost System	
Management of Quality Costs	
Quality Cost Categories	. 100
Quality Cost Implementation	. 100
Quality Cost Collection	. 101
Quality Cost Summary and Analysis	
Quality Cost Reporting	
Using Quality Costs	. 106
Quality Cost Principles and Lessons	
Quality Training	. 108
Chapter 3 Product, Process, and Service Design	. 115
Classification of Quality Characteristics	
Design Inputs, Techniques, and Review	
Inputs	
Techniques	
Quality Function Deployment	
Review	
Technical Drawings and Specifications	
Geometric Dimensioning and Tolerancing (GD&T)	
Positional Tolerances	
Verification and Validation.	
Reliability and Maintainability	
Predictive and Preventive Maintenance Tools	
Reliability and Maintainability Indices	
Reliability Models	
Reliability/Safety/Hazard Assessment Tools	. 151
Chapter 4 Product and Process Control	. 181
Methods	
Material Control	. 186
	. 100

vii

Kanban	316
Visual Control	318
8 Wastes	318
Standardized Work	323
Takt Time	323
Single Minute Exchange of Die (SMED)	325
Overall Equipment Effectiveness (OEE)	326
Poka-Yoke	329
Total Productive Maintenance	330
Corrective Action.	331
Problem Identification	333
Failure and Root Cause Analysis	334
5-Why Analysis	336
Problem Correction	337
Recurrence Control.	339
Verification of Effectiveness	340
Preventive Action	340
Error Proofing	341
Robust Design	342
Chapter 6 Quantitative Methods and Tools	343
Collecting and Summarizing Data	343
Types of Data	343
Measurement Scales.	344
	344
Data Collection Methods	
Data Accuracy and Integrity	349
Data Visualization Techniques	351
Descriptive Statistics	352
Graphical Methods for Depicting Distributions	359
Quantitative Concepts	361
Terminology	362
Drawing Statistical Conclusions	363
Probability Terms and Concepts	363
Probability Distributions	372
Theoretical Probability Functions	372
General Form of Expected Value and Variance	375
Continuous Distributions	376
Discrete Distributions	384
Central Limit Theorem	389
Sampling Distributions	391
Statistical Decision-Making	394
Point Estimates	394
Confidence Intervals	396
Hypothesis Testing	406
The <i>p</i> -Value Approach to Hypothesis Testing	428
Analysis of Variance (ANOVA)	431
Goodness-of-fit Tests	441
Contingency Tables	444

	ips Between Variables	447
	Linear Correlation	447
	Regression	451
	eries Analysis	460
	Process Control (SPC)	462
	ves and Benefits	462
	on and Special Causes of Variation	463
	on of Variable	463
	ll Subgrouping	464
	Charts	464
Control	l Chart Analysis	486
	Run Statistical Process Control	488
	d Performance Capability	490
	Capability Studies	490
	Performance Versus Specifications	491
Process	Capability Indices	494
	Performance Indices	497
Design and	d Analysis of Experiments	497
	ology	498
Plannir	ng and Organizing Experiments	502
	Principles	504
Full-Fa	ctorial Experiments	506
Two-Le	vel Fractional Factorial Experiments	52 3
	isk Management	529
	amentals	529
	erarchy	530
	ocess Approach	532
	11 and Risk Management	534
	d Opportunity in ISO 9001	536
	anagement Process	537
	ning and Assessment	539
	anagement Plan	539
	ssessment	543
	ment, Control, and Monitoring	554
	cation and Documentation	554
Risk Ma	anagement System Evaluation	556
	eatment Strategies	557
	onitoring	559
Mitigat	ion Planning	564
Appendix A	Control Limit Formulas	571
Appendix B	Constants for Control Charts	572
Appendix C	Statistical Tolerance Factors for at Least 99% of the	
	Population	57 3
Appendix D	Standard Normal Distribution for Selected Z-Values	574
Appendix E	Areas under Standard Normal Distribution to the	576

Table of Contents

Appendix F	F Distribution $F_{0.10}$	579
Appendix G	F Distribution $F_{0.05}$	583
Appendix H	F Distribution $F_{0.01}$	587
Appendix I	Binomial Distribution	591
Appendix J	Chi-Square Distribution	593
Appendix K	Exponential Distribution	595
Appendix L	Poisson Distribution	597
Appendix M	Median Ranks	599
Appendix N	Normal Scores	601
Appendix O	Values of t Distribution	603
Glossary		605
References		631
Index		643

List of Figures

Figure 1.1	Deming's 14 points	10
Figure 1.2	Ten effectiveness tests for strategic quality plans	13
Figure 1.3	Decision tree for production machine	24
Figure 1.4	Work breakdown structure (partial)	28
Figure 1.5	Gantt chart example	29
Figure 1.6	RACI example	30
Figure 1.7	Action plan format example	31
Figure 1.8	Action plan implementation schedule example	32
Figure 1.9	Information systems strategy matrix	37
Figure 1.10	The V model for software development	38
Figure 1.11	Current status report example	40
Figure 1.12	ASQ Code of Ethics	42
Figure 1.13	Linking team structure.	47
Figure 2.1	Product life cycle and quality system elements	77
Figure 2.2	Tiers of the quality documentation hierarchy	81
Figure 3.1	Critical to quality tree	119
Figure 3.2	QFD house of quality diagram for a paperwork process	123
Figure 3.3	Input-output requirements matrix	123
Figure 3.4	House of quality for a car door	124
Figure 3.5	Some geometric tolerancing symbols	128
Figure 3.6	Interpretation of a geometric tolerance on a drawing	128
Figure 3.7	Part drawing with and without tolerances of form	129
Figure 3.8	Two parts dimensioned with positional tolerances	130
Figure 3.9	Reliability function versus time	137
Figure 3.10	Cumulative distribution function versus time	138
Figure 3.11	Failure density versus time	138
Figure 3.12	Hazard rate versus time	139
Figure 3.13	A typical series system	140
Figure 3.14	A typical parallel system	142
Figure 3.15	A standby system with <i>n</i> components in standby mode	144
Figure 3.16	The general failure rate model (the bathtub curve)	147

Figure 3.17	Probability density function for constant failure rate	148
Figure 3.18	Reliability function for constant failure rate	149
Figure 3.19	Probability density functions for the Weibull model with different shape and scale parameters	150
Figure 3.20	Hazard rate functions for the Weibull model with different shape	
	and scale parameters	150
Figure 3.21	Hazard-based risk management	152
Figure 3.22	Relation among hazard, hazardous situation, impact (harm), and risk	15
Figure 3.23	Hazard analysis process	15
Figure 3.24	Probability path from hazard to harm	15
Figure 3.25	Blank design FMEA form	16
Figure 3.26	Blank process FMEA form	16
Figure 3.27	Design FMEA example	17
Figure 3.28	Process FMEA example	17
Figure 3.29	The UFMEA process	17
Figure 3.30	Failure mode effects and criticality analysis	18
Figure 4.1	Control plan example: page 1	18
Figure 4.2	Control plan example: page 2	18
Figure 4.3	An operating characteristic (OC) curve for $n = 50$ and $c = 3$	19
Figure 4.4	Effect on an OC curve of changing sample size (<i>n</i>) when accept number (<i>c</i>) is held constant	19
Figure 4.5	Effect of changing accept number (<i>c</i>) when sample size (<i>n</i>) is held constant	20
Figure 4.6	Effect of changing lot size (N) when acceptance number (c) and sample size (n) are held constant	20
Figure 4.7	OC curves for sampling plans having the sample size equal to 10% of the lot size	20:
Figure 4.8	OC curve for double sampling plan where $n_1 = 75$, $c_1 = 0$, $r_1 = 3$, $n_2 = 75$, $c_2 = 3$, $r_2 = 4$	20
Figure 4.9	Average sample number curve for double sampling plan	20
Figure 4.10	Switching rules for normal, tightened, and reduced inspection	20
Figure 4.11	Structure and organization of ANSI/ASQ Z1.9	21
Figure 4.12	Go/no-go gage to check the diameter of a shaft	22
Figure 4.13	ISO/R 468 surface roughness parameters	22
Figure 4.14	Other parameters of surface roughness	22
Figure 4.15	Two types of roundness-measuring instruments: (a) rotating table, (b) rotating workpiece	22
Figure 4.16	Four ways by which a center may be chosen	22
Figure 4.17	Coordinate measuring machine classifications	22
Figure 4.18	Classification of standards	23
Figure 4.19	Factors affecting the measuring process	23
Figure 4.20	\overline{x} and R control charts for the thermal performance example	25
Figure 5.1	Four primary flowcharting symbols	25

Figure 5.2	Flowchart for diagnostic testing process	260
Figure 5.3	Typical Pareto chart	261
Figure 5.4	Cause and effect diagram/template	262
Figure 5.5	Cause and effect diagram: product damaged after shipping	263
Figure 5.6	Run chart example	264
Figure 5.7	A simple check sheet	266
Figure 5.8	Three possible relationships identified by scatter diagrams	267
Figure 5.9	Training time versus defects	268
Figure 5.10	Histogram of compressive strength of concrete samples, where 3500 psi is the minimum allowed strength	269
Figure 5.11	Student focus group affinity diagram	273
Figure 5.12	Force field analysis for computer support	274
Figure 5.13	Simplified line shutdown fault tree	275
Figure 5.14	Partial manufacturing cost improvement goal tree	277
Figure 5.15	Receiving/storage/stocking subprocesses PDPC	279
Figure 5.16	Quality function deployment matrix diagram example	282
Figure 5.17	Line support subprocess interrelationship diagraph	284
Figure 5.18	Simplified CPM schedule network–line support improvement implementation	287
Figure 5.19	Enterprise-level process map	290
Figure 5.20	Visual alternative–improved subprocess map/PDPC	291
Figure 5.21	SIPOC diagram for work-related injuries	292
Figure 5.22	Generic production system process value chain diagram. (a) Analytical view. (b) General systems view	293
Figure 5.23	Benchmarking and breakthrough thinking	296
Figure 5.24	Basic plan-do-study-act cycle	299
Figure 5.25	Implication of sigma-quality level. The ppm rate for part or process step considers a 1.5σ shift of the mean where only 3.4 ppm fail to meet specifications at a six sigma quality level	305
Figure 5.26	Normal distribution curve illustrates three sigma and six sigma	
Ü	parametric conformance	306
Figure 5.27	With a centered normal distribution between six sigma limits, only two devices per billion fail to meet the specification target	306
Figure 5.28	Effects of a 1.5σ shift where only 3.4 ppm fail to meet specifications	307
Figure 5.29	Defect rates (ppm) versus sigma-quality level	307
Figure 5.30	Six Sigma metrics and implementation strategy	310
Figure 5.31	Value stream map for a manufacturing process.	314
Figure 5.32	Value stream map	315
Figure 5.33	Example of a kanban system	317
Figure 5.34	Example of visual control	318
Figure 5.35	A sea of inventory often hides unresolved problems	320
Figure 5.36	Example of a heijunka box	321
Figure 5.37	C-shaped manufacturing cell	321

An example of a standard work chart for a skateboard assembly production line	323
	329
	330
	333
•	345
	347
Minitab [©] autocorrelation output	348
	348
-	349
	352
_	357
	357
	360
Weibull probability plot for life of a part	361
A probability density function for a random variable <i>X</i>	373
A line graph of the pmf for random variable X	374
Probability density function for the normal distribution	377
Probability density function for a standard normal distribution	378
Probability density function for a standard normal distribution	379
Probability density function for an exponentially distributed random variable	380
Probability density function for the Weibull distribution	382
	382
Approximations to probability distributions	389
Probability density functions for three <i>t</i> distributions	392
Statistical software output of a <i>t</i> -test	429
Possible decisions and errors in hypothesis testing	430
Box plots for catalyst amount	437
Interaction plots of factors A and B	438
Interaction plot for temperature and catalyst	441
Various scatter plots for two variables <i>x</i> and <i>y</i>	449
Scatter plot of temperature and yield	450
Scatter plot and fitted regression line for the yield data	453
Run chart for NMCM rate	461
\overline{x} and R control charts for turnaround times	468
\overline{x} and s control charts for complete blood count analysis turnaround times	471
	474
	478
·	478
	479
	production line Elements of OEE A poka-yoke technique example The seven phases of corrective action Example of tally or check sheet ELT and ETL framework Minitab® autocorrelation output Minitab® outlier plot test Minitab® distribution identification XYZ corporation dashboard Dot plot of blood analysis turnaround times Histograms of variously shaped distributions Normal probability plot of puncture force for toasted corn flakes Weibull probability plot for life of a part A probability density function for a random variable X . Probability density function for a random variable X . Probability density function for a standard normal distribution Probability density function for a standard normal distribution Probability density function for a exponentially distributed random variable Probability density function for the Weibull distribution Continuous uniform probability distributions Approximations to probability distributions Probability density functions for three t distributions Statistical software output of a t -test Possible decisions and errors in hypothesis testing Box plots for catalyst amount Interaction plots of factors A and B Interaction plot for temperature and catalyst Various scatter plots for two variables x and y Scatter plot of temperature and yield Scatter plot and fitted regression line for the yield data Run chart for NMCM rate \overline{x} and R control charts for turnaround times

Figure 6.36	<i>np</i> control chart for errors in account activities
Figure 6.37	<i>c</i> chart for number of billing errors
Figure 6.38	<i>u</i> chart for billing statement errors
Figure 6.39	Flowchart for control chart selection
Figure 6.40	General system process
Figure 6.41	All possible combinations of two factors A and B, with two levels each
Figure 6.42	Cube plot for partition length, partition height, and gap underneath
Figure 6.43	Main effects plot for the air quality example
Figure 6.44	Interaction plot for partition length and partition height
Figure 6.45	Interaction plot for partition length and gap underneath
Figure 6.46	Interaction plot for partition height and gap underneath
Figure 6.47	Normal probability plot of the residuals for the air quality example
Figure 6.48	Residuals plotted against levels of factor A (partition length)
Figure 6.49	Residuals plotted against factor B (partition height)
Figure 6.50	Contour plot for the air quality example
Figure 6.51	Normal probability plot of the estimated effects for the air quality example
Figure 7.1	Risk management pillars
Figure 7.2	Risk-based process approach
Figure 7.3	Confluence of risk management, process approach, and PDCA with quality management.
Figure 7.4	Risk management process overview
Figure 7.5	Risk management process per ISO 31000:2018
Figure 7.6	Consequence analysis and occurrence assignment comprise risk analysis
Figure 7.7	Usage of risk metalanguage
Figure 7.8	Outcomes of the risk evaluation process
Figure 7.9	Four options for risk treatment or modification
Figure 7.10	Risk responses to opportunities (positive risks) and threats (negative risks)
Figure 7.11	Risk monitoring example with KRIs
Figure 7.12	Risk response planning process
Figure 7.13	From original risk to residual risk
Figure 7.14	Residual risk and inherent risk
Figure 7.15	Untreatable risk, residual risk, and inherent risk
Figure 7.16	Flowchart for risk response planning process

List of Tables

Table 1.1	Comparing the impact quality can have	3
Table 1.2	A timeline of quality methods	5
Table 1.3	Nominal group technique ranking table	56
Table 1.4	Multivoting	56
Table 1.5	Customer perspectives of value	62
Table 2.1	Risk-based audit approach	95
Table 2.2	Quality cost elements by category	102
Table 2.3	Five different levels of evaluation	112
Table 3.1	VoC, driver, and CtQ examples	120
Table 3.2	Number of failures in the time intervals	136
Table 3.3	Reliability, cdf, failure density, and hazard rate for the light bulb example	137
Table 3.4	Design FMEA severity criteria	166
Table 3.5	Process FMEA severity criteria	166
Table 3.6	Design FMEA occurrence criteria	168
Table 3.7	Process FMEA occurrence criteria	171
Table 3.8	Design FMEA detection criteria	172
Table 3.9	Process FMEA detection criteria	179
Table 4.1	Probability of acceptance for various levels of fraction nonconforming	198
Table 4.2	Probability of acceptance for various n	199
Table 4.3	Fraction defective at indifference quality level	200
Table 4.4	Probability of acceptance for various lot sizes	201
Table 4.5	Double sampling plan	203
Table 4.6	OC curve calculations for double sampling plan	203
Table 4.7	Acceptance and rejection number for single, double, and multiple sampling plans	210
Table 4.8	Percentage of acceptance sampling for previously discussed plans	211
Table 4.9	Typical standards and instrumentation for industrial length and angle measurements.	219
Table 4.10	Base units of the international system	234
Table 4.11	Definitions of the SI base units	235

Table 4.12	Bias and average estimates for parts of different sizes	243
Table 4.13	Necessary quantities for an analysis of variance	248
Table 4.14	Typical data for the gage R&R experiment	248
Table 4.15	Gage R&R estimates using the tabular method	249
Table 4.16	ANOVA for the gage R&R example.	250
Table 4.17	Gage R&R results using the ANOVA method	251
Table 4.18	Variance component estimates for both methods	252
Table 5.1	Training data	267
Table 5.2	Issues, possible root causes, and general impact summary for receiving/storage/stocking PDPC	280
Table 5.3	Line support improvement process activities, sequences, and durations	286
Table 5.4	Line support improvement scheduling details	288
Table 5.5	Six Sigma needs checklist	301
Table 5.6	The six big losses	327
Table 5.7	Positrol of a wave soldering process	339
Table 5.8	Checklist for process certification.	340
Table 5.9	Types of fail-safe devices	341
Table 6.1	Frequency and cumulative frequency distributions for the ungrouped diameter data	358
Table 6.2	Frequency and cumulative frequency distributions for the grouped diameter data	358
Table 6.3	Categorical frequency distribution of manufacturing defects	359
Table 6.4	Probabilities associated with medication errors	366
Table 6.5	Contingency table of part color and part size	367
Table 6.6	pdf, mean, and variance for certain continuous distributions	384
Table 6.7	pmf, mean, and variance for certain discrete distributions	390
Table 6.8	Rejection regions for a single sample mean, variance known	409
Table 6.9	Rejection regions for a single sample mean, variance unknown	411
Table 6.10	Summary of situations outlined for testing the population mean	411
Table 6.11	Rejection regions for a single sample hypothesis test on the variance	412
Table 6.12	Rejection regions for a single sample hypothesis test on the proportion	413
Table 6.13	Rejection region for a hypothesis test on the means of two independent samples, variance known	416
Table 6.14	Rejection regions for a hypothesis test on the means of two independent samples, variance equal, but unknown	418
Table 6.15	Wall thickness measurements for two vendors	418
Table 6.16	Rejection regions for a hypothesis test on two independent variances	420
Table 6.17	Rejection regions for a hypothesis test on two independent proportions	424
Table 6.18	Heart rate data for two types of exercise equipment	426
Table 6.19	Heart rate data for paired observations	426

Table 6.20	Paired heart rate data with combined differences
Table 6.21	Conversion rates for three levels of catalyst
Table 6.22	A typical table of data for an experiment with one factor
Table 6.23	One-way ANOVA table
Table 6.24	ANOVA table for conversion rate data
Table 6.25	Conversion rates for experiment with two factors
Table 6.26	Two-way ANOVA table
Table 6.27	ANOVA table for conversion rate example with two factors of
	interest
Table 6.28	Historical percentages of nonconformities for rejected products
Table 6.29	Number of nonconformities for a random week
Table 6.30	Observed and expected frequencies for nonconformity data
Table 6.31	A generic contingency table
Table 6.32	A contingency table for machine breakdown.
Table 6.33	Expected frequencies for machine breakdown
Table 6.34	Temperature and yield data
Table 6.35	ANOVA table for testing significance of regression
Table 6.36	ANOVA table for temperature and yield regression model
Table 6.37	General notation for subgroup data
Table 6.38	Turnaround time data for \bar{x} and R charts
Table 6.39	Turnaround time data for \bar{x} and s charts
Table 6.40	Weights for dry food packages
Table 6.41	Surgical site infection rates
Table 6.42	Errors in account activities
Table 6.43	Errors on hospital billing statements
Table 6.44	Billing statement errors for a 24-day period
Table 6.45	Number of nonconformities for printed circuit boards
Table 6.46	Recommended minimum values of the process capability ratio
Table 6.47	A 2 ³ full-factorial data collection table.
Table 6.48	A 2 ³ full-factorial data collection table with data
Table 6.49	A 2 ³ full-factorial data collection table with run averages
Table 6.50	Guidelines for designing an experiment
Table 6.51	ANOVA table for two-factor factorial experiment
Table 6.52	Coded factor levels
Table 6.53	Combinations for terms in a two-factor interaction model
Table 6.54	Factor levels for ventilation experiment
Table 6.55	Partitioning effect on ventilation effectiveness
Table 6.56	Main effect and interaction table for the ventilation factorial design
Table 6.57	Estimated effects for the air quality example
Table 6.58	ANOVA table for the ventilation example

xx List of Tables

Table 6.59	ANOVA table for the ventilation example, with only statistically significant terms	516
Table 6.60	<i>t</i> -tests for factors and interactions for the air quality example	517
Table 6.61	A single replicate of the air quality example	521
Table 6.62	<i>t</i> -test results for the air quality example	522
Table 6.63	Main effects and interactions table for a 2 ³⁻¹ design	525
Table 6.64	Half-fraction of a 2 ⁴ factorial design	526
Table 7.1	Risk focus of ISO 9001:2015 clauses	536
Table 7.2	Tabular organization of cause, hazardous situation, effect, classification and risk line item	544
Table 7.3	A 5x5 risk matrix	547
Table 7.4	Risk levels and decision rules	548
Table 7.5	Risk matrix populated using probability x impact	548
Table 7.6	Risk criticality levels and risk index number	549
Table 7.7	Risk matrix coded for risk levels by acceptability decisions	549
Table 7.8	Action priority rating levels	550

Preface

The purpose of this book is to help people become better quality engineers, with American Society for Quality (ASQ) certification being a tool toward that end. For many purchasing this book, you probably have a good idea about what a quality engineer is and how you fit the bill with your strengths and experience. Congratulations and thank you for choosing this valuable vocation!

For others, let's begin with what quality engineering is. It is not just one field. Quality engineers can be found in product design, manufacturing, post-market surveillance, supplier development, and auditing, for example. Some of us work on the front end of new product development, crossing into reliability engineering and proactive design assurance. Others are continuous improvement and failure analysis experts, utilizing product and process performance information and solving problems identified during manufacturing and use. Some quality engineering disciplines are more technical, some are more interpersonal, and all have various levels of leadership and management.

Quality engineering crosses all demographics, generations, and educational backgrounds. It provides a unifying influence to an organization by its nature of using objective evidence, facts, and data. Few people come out of high school or college knowing that they want to be a Quality Engineer. However, occasionally someone does. More often, however, after several years of working and being exposed to many functions in an organization, a person will decide that quality engineering is what they want to do.

Much comes down to natural inclination and knowing yourself. Have you seen yourself migrate toward using mathematical tools and numbers? Do you consider yourself to have excellent attention to detail, the ability to think and present logically and clearly, and the capability of identifying problems and helping solve them? Can you discern when to take a strong stand on an issue for compliance or safety, and when there may be a gray area involved or give-and-take needed to optimize an outcome? Have others pointed out any of these characteristics in you?

With the foundation built on your natural abilities and interests, your education, and your experiences, ASQ certification can formally get your arms around what has proudly become your professional identity. Think of it as a present, a gift to yourself and by extension to your organization and professional network. In that way, the package is the certified quality engineer (CQE) body of knowledge (BoK), consisting of seven major areas:

- Management and leadership
- The quality system

- Product, process, and service design
- Product and process control
- Continuous improvement
- · Quantitative methods and tools
- Risk management

The bow and ribbon on the package are the certification itself, prestigious peer recognition for passing a difficult exam to demonstrate that you really do understand and are ready to apply this broad and comprehensive body of knowledge.

Every five to seven years, the body of knowledge of an ASQ certification is reevaluated and updated. A comprehensive process is followed, and at the end we move right into producing the references and study guides to help people prepare for the updated exam. A group of people begin to update the exam question bank by deleting, adding, and revising questions as necessary. At the same time, a separate, independent group of people begin updating ASQ training and certification preparation materials, of which this handbook is one.

The process to update a handbook is somewhat involved and takes an army of people, who you will see listed in the Acknowledgments. Quality Press provides a gap assessment between the old and new bodies of knowledge and handles logistics such as contracts and agreements. If there is one part of the process that stands out as most important, it is the selection of authors, which for this book are a collection of renowned experts in their fields and experienced contributors to other publications. Editing then becomes a matter of taking the individual contributions of the authors, fitting their content into the handbook in the logical sequence per the body of knowledge, filling gaps with some writing yourself, and polishing it all to make it look consistent.

For this edition of *The ASQ Certified Quality Engineer Handbook*, the following is a summary of changes. These changes were made to cover the new body of knowledge comprehensively and clearly. It was also acknowledged that certain content, while still of value to quality professionals of all kinds, was no longer part of the body of knowledge for this certification. The following list is being provided to be thorough in communication and honest about what has been changed and removed.

New content

- Cost-benefit analysis and responsible, accountable, consulted, and informed matrix (RACI) as quality management system deployment techniques in Chapter 1
- Assessing risks in audit planning and implementation in Chapter 2
- Critical to quality as a design input in Chapter 3
- Hazard analysis and use failure mode and effects analysis as reliability/safety/hazard assessment tools in Chapter 3
- Overall equipment effectiveness (OEE) as a Lean tool in Chapter 5
- 5 Whys as a corrective action tool in Chapter 5

- Data automation and database integration as data collection methods in Chapter 6
- An entirely new chapter 7 on risk management

• Restructured content

- Risk management tools were moved from Chapter 7 to Chapter 3 as part of reliability/safety/hazard assessment tools.
- Continuous improvement tools and methodologies were aligned with the body of knowledge in Chapter 5.
- Quality function deployment (QFD) was moved from Chapter 1 to Chapter 3.

Regarding this book's writing style, attempts were made to simplify and reduce the number of words needed to make the point. Microsoft Word was very helpful to identify opportunities for improvement in this area. For example, using the CQE BoK philosophy of Lean, simply replacing the approximately 100 previous usages of "in order to" and "a number of" with "to" and "several" made an impact on word count and readability.

Ultimately, this book was built upon the foundation laid by an outstanding group of editors of previous editions, who are mentioned in the next section.

I hope you find this edition to be helpful in preparing for the certification exam and as a reference to help you succeed in your profession.

Acknowledgments

First, thank you to the giants in quality engineering who laid the foundation to this book by serving as editors of previous editions.

- Roger W. Berger
- Donald W. Benbow
- Ahmad K. Elshennawy
- H. Fred Walker
- Connie M. Borror
- Sarah E. Burke
- Rachel T. Silvestrini

Next, the Quality Press editorial staff was tremendously helpful in providing guidance and removing roadblocks, some of which seemed significant enough hurdles that this project could have been derailed. Simple advice ranged from determining the scope of the content (what should be in and out of the book) to reducing manuscript file size. A breakthrough at one critical point was the suggestion to use skilled people to produce the equations and mathematical symbols, which I was stuck on but apparently is simple *if* you know how to do it.

- Lillian McAnally, Managing Editor, Quality Press
- Erica Barse, Associate Editor, Quality Press

This project, and editing a book is certainly a project by any measure, could not have been completed if I were not surrounded by an incredibly knowledgeable group of authors, who each took on an area of new content in their area of expertise. They also provided guidance during the project to optimize communications and information flow. This is also a call out to a few of the ASQ Technical Communities. The certified quality engineer exam does not have a sponsoring division like some exams do. Therefore, to obtain the assistance needed to determine contributing authors, I reached out to leadership in ASQ divisions whose focus is on areas including in the CQE BoK. The Audit Division, the Quality Management Division, and the Statistics divisions all provided at least one author, who are listed below followed by the subject(s) each contributed.

- Matthew A. Barsalou, BorgWarner Systems Engineering GmbH Critical to quality, control chart selection
- Andrew Davison, Genesys Spine Assessing audit risks, 5 Whys, and auditing standards
- Denis Devos, Devos Associates Inc. Cost-benefit analysis and responsible, accountable, consulted, and informed matrix
- Harish Jose, Bausch + Lomb Synergetics Overall equipment effectiveness
- Dr. Michael Mladjenovic, The Sensei Group Data automation and database integration
- Jayet Moon, Terumo Medical Corporation Risk management and tools

Two graduate students from the Georgia Institute of Technology produced the mathematical content and at times went above and beyond by finding editing improvements.

- Sweta Senthil
- Manay Sheth

Others provided additional sets of eyes and risk management subject matter expertise in the form of pre-submission reviews.

- Barry Craner, CQA-Associates
- Veronica Cavendish-Stephens, Auchincloss-Stephens International

Now it gets more personal. Over the years, there have been many people who have believed in me and given me a chance to advance in quality engineering when at each step of the way, someone else told me that the next step was not possible. It has been a journey. Thank you to ...

- Stephen Uliana, Mitsubishi Chemical Advanced Materials, for providing my first quality engineering opportunity at Quadrant Engineering Plastic Products and for supporting my initial, brash career venture into attaining ASQ certifications.
- Jeffrey P. Lewis, Globus Medical, for being the hiring manager to provide my first so-titled quality engineering position at Arrow International (now Teleflex).
- Scott McKently, Owens & Minor, for promoting me into my first and second quality engineering management positions at Teleflex.
- Robert Z. Phillips, Siemens Healthineers, for providing support and stretch opportunities at Teleflex to prepare me for continued growth.
- Julius Aviza for providing additional new opportunities at Teleflex that led to my job growing into the quality systems area including medical device management representative responsibilities.

• Michael Byrnes, ASQExcellence, who identified me to edit *The ASQ Certified Medical Device Auditor Handbook* a couple years ago, which led to a similar opportunity with this handbook.

The company Teleflex was mentioned several times above. I would like to acknowledge the organization as a whole for recognizing the importance of individual development plans and for fully supporting ASQ certifications and activities that lead to personal growth that can be translated to the job. It is a win for all and not taken for granted.

Finally, I would like to thank my wife, Krista, for patiently tolerating my work on this book at every opportunity for several months. That support was essential.

List of Acronyms

AHP: analytical hierarchy process

AIAG: Automotive Industry Action Group

AND: activity network diagram ANOVA: analysis of variance AQL: acceptable quality limit AQP: advanced quality planning

ARL: average run length ASN: average sample number ASQ: American Society for Quality

ASTM: American Society for Testing and Materials

ATE: automated test equipment ATI: average total inspection BoK: body of knowledge

cdf: cumulative density function/cumulative distribution function

CL: center line

CLA: center line average

CM: configuration management

CMM: coordinate measuring machines

COPQ: cost of poor quality

COQ: cost of quality

CQE: certified quality engineer

CSA: Canadian Standards Association

CtQ: Critical to Quality df: degrees of freedom

dFMEA: design failure mode and effects analysis DMAIC: define, measure, analyze, improve, control DMRCS: define, measure, reduce, combine, select

DoD: Department of Defense DOE: design of experiments

DPMO: defects per million opportunities